Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins

نویسندگان

  • Michael R. Shirts
  • Jed W. Pitera
  • William C. Swope
  • Vijay S. Pande
چکیده

Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study ~accuracy! and establishing statistically meaningful measures of the uncertainties resulting from finite sampling ~precision!. We use large-scale distributed computing to access sufficient computational resources to extensively sample molecular systems and thus reduce statistical uncertainty of measured free energies. In order to examine the accuracy of a range of common models used for protein simulation, we calculate the free energy of hydration of 15 amino acid side chain analogs derived from recent versions of the OPLS-AA, CHARMM, and AMBER parameter sets in TIP3P water using thermodynamic integration. We achieve a high degree of statistical precision in our simulations, obtaining uncertainties for the free energy of hydration of 0.02–0.05 kcal/mol, which are in general an order of magnitude smaller than those found in other studies. Notably, this level of precision is comparable to that obtained in experimental hydration free energy measurements of the same molecules. Root mean square differences from experiment over the set of molecules examined using AMBER-, CHARMM-, and OPLS-AA-derived parameters were 1.35 kcal/mol, 1.31 kcal/mol, and 0.85 kcal/mol, respectively. Under the simulation conditions used, these force fields tend to uniformly underestimate solubility of all the side chain analogs. The relative free energies of hydration between amino acid side chain analogs were closer to experiment but still exhibited significant deviations. Although extensive computational resources may be needed for large numbers of molecules, sufficient computational resources to calculate precise free energy calculations for small molecules are accessible to most researchers. © 2003 American Institute of Physics. @DOI: 10.1063/1.1587119#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins

A promising approach to developing improved potential functions for modeling macromolecular interactions consists of combining protein structural analysis, quantum mechanical calculations on small molecule models, and molecular mechanics potential decomposition. Here we apply this approach to the interactions of pairs of ring-containing amino acids in proteins. We find reasonable qualitative ag...

متن کامل

Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-oc...

متن کامل

Calculation of the free energy of solvation for neutral analogs of amino acid side chains

The ability of the GROMOS96 force field to reproduce partition constants between water and two less polar solvents (cyclohexane and chloroform) for analogs of 18 of the 20 naturally occurring amino acids has been investigated. The estimations of the solvation free energies in water, in cyclohexane solution, and chloroform solution are based on thermodynamic integration free energy calculations ...

متن کامل

Investigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study

In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...

متن کامل

Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.

Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study (accuracy) and establishing statistically meaningful measures of the uncertainties resulting from finite sampling (precision). In order to examine the accuracy of a range of common water models used for protein simulation for their solute/solvent properties, we c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003